вівторок, 22 березня 2016 р.

Нейтронні зорі




 


Поняття
Нейтронна зоря — зоря на завершальному етапі своєї еволюції, що не має внутрішніх джерел енергії та складається переважно з нейтронів, які перебувають у стані виродженого фермі-газу, із невеликою домішкою інших частинок. Густина такого об'єкта, згідно з сучасними астрофізичними теоріями, сумірна з густиною атомного ядра.
Нейтронні зорі — одні з небагатьох астрономічних об'єктів, які спочатку було теоретично передбачено, а потім уже відкрито експериментально. 1932 року Ландау припустив існування надщільних зір, рівновага яких підтримується ядерними силами. А 1934 року астрономи Вальтер Бааде й Фріц Цвіккі назвали їх нейтронними зорями й пов'язали з вибухами наднових. Перше загальновизнане спостереження нейтронної зорі відбулося 1968 року, коли були відкрито пульсари.











     Кінцева стадія еволюції зір

 Зоря зберігає свій об'єм завдяки тиску, який утворює газ, розігрітий до високих температур внаслідок ядерного синтезу. Газовий тиск урівноважує гравітаційні сили й протидіє гравітаційному стисканню зорі. Водень, що спочатку є основною складовою зір, внаслідок термоядерних реакцій перетворюється на гелій. У центрі зорі поступово накопичується гелієве ядро, маса якого постійно зростає. Зі зменшенням кількості водню, зменшується потужність термоядерних реакцій і, відповідно, температура в надрах зорі. Газовий тиск стане меншим від гравітаційних сил і відбувається стиснення ядра. Після спалювання більшої частини водню, можливі різні сценарії подальшої еволюції зорі, що залежать від її маси:

  • Якщо маса зорі менша половини маси Сонця, подальші ядерні реакції у ній не відбуваються, і вона поступово згасає.
  • Якщо маса зорі на головній послідовності більша половини, але менша трьох мас Сонця, то невдовзі після залишення головної послідовності у ній розпочинається потрійна гелієва реакція, в якій гелій перетворюється на карбон. Невдовзі після того зоря перетворюється на білий карлик.
  • У зорях із масою 3-8 мас Сонця у ядрі відбуваються подальші ядерні реакції з утворенням важчих елементів (аж до феруму).
Після утворення в зорі залізного ядра подальші ядерні реакції не призводять до виділення енергії. Таким чином, джерела ядерної енергії в надрах зорі майже повністю вичерпано. Якщо маса ядра в цей час перевищує межу Чандрасекара, подальше стиснення призводить до того, що нейтрони в таких умовах стають стабільними частинками. Електрони поєднуються з протонами, і тиск всередині зорі різко зменшується. Центральна частина стискається доти, доки стиснення не буде зупинено тиском виродженої нейтронної речовини. Густина речовини в ядрі стає майже рівною густині атомного ядра. Унаслідок різкого стиснення ядра зовнішні шари зорі падають на ядро — відбувається гравітаційний колапс, який супроводжується спалахом наднової. Внаслідок спалаху зовнішні шари зорі з великою швидкістю викидаються у навколишній простір, а компактне ядро перетворюється на нейтронну зорю.

Спостереження

Нейтронна зоря має дуже низьку світність (внаслідок невеликого розміру). Безпосередньо спостерігати саму нейтронну зорю важко. Спостереження ведуть опосередковано, через ті ефекти, які спричинюють особливості нейтронної зорі.
У Всесвіті досить поширені подвійні зоряні системи. Якщо одна з зір подвійної системи перетворилась на нейтронну зорю, то можливе перетікання речовини другої зорі на нейтронну зорю (акреція) й утворення акреційного диску. Акреційний диск може мати високу світність за рахунок вивільнення гравітаційної енергії й слугує ознакою існування в подвійній системі компактного й масивного зоряного об'єкта.
Якщо нейтронна зоря має потужне магнітне поле, то речовина з акреційного диску випадає на ділянках магнітних полюсів. Кінетична енергія падаючої речовини перетворюється на електромагнітне випромінювання. Обертання призводить до появи пульсара — спостерігається астрономічний об'єкт, що випромінює у імпульсному режимі. Частота пульсацій визначається періодом обертання.
Також поодинокі нейтронні зірки можуть бути виявлені завдяки явищу гравітаційного фокусування (при проходжені нейтронної зірки між звичайною зорею і спостерігачем відбувається візуальне збільшення яскравості зорі, оскільки гравітаційне поле нейтронної зірки викривлює рух світла). 
            Будова нейтронних зір 

Виміряні маси нейтронних зір (у подвійних системах) становлять 1—2 M. Радіус нейтронної зорі становить близько 10-20 км, він зменшується зі збільшенням її маси. Унаслідок збереження моменту кількості руху під час гравітаційного стиснення нейтронна зоря дуже швидко обертається: період обертання становить секунди або навіть частки секунди.
Вважається, що нейтронні зорі мають тверду зовнішню кору, що складається переважно з заліза (із домішками інших елементів). Товщина кори становить близько десятої частки радіусу. Під зовнішньою корою є внутрішня. Ще глибше розташована вироджена нейтронна рідина (із невеликою домішкою протонів та електронів). У центрі густина може перевищувати ядерну. Стан речовини всередині нейтронних зір достеменно невідомий, оскільки в земних умовах його поки що неможливо відтворити.


Пульсари


 Поняття
Пульсар — космічне джерело електромагнітного випромінювання, що реєструється на Землі у вигляді імпульсів — сплесків, які періодично повторюються.
 
Перший пульсар відкрили Джоселін Белл і Ентоні Х'юїш 1967 року.


Джерелом імпульсів вважається нейтронна зоря з потужним магнітним полем, яка обертається і має вузькоспрямоване випромінювання. 




        Види пульсарів

Більшість пульсарів спостерігаються в радіодіапазоні. В наш час  відомо понад 1000 пульсарів (зокрема в Паркському огляді було зареєстровано 1031 пульсар). Радіопульсар є кінцевою стадією еволюції одиночної масивної зорі. Нейтронна зоря утворюється в результаті вибуху наднової. Вибух є асиметричним, тому швидкості радіопульсарів часто перевищують 300 км/с. З часом період радіопульсара збільшується, а потужність випромінювання спадає. Навколо багатьох радіопульсарів спостерігаються газові оболонки, сформовані пульсарним вітром — плеріони.
У радіопульсарів спостерігаються стрибкоподібні зменшення періодів — глітчі. Їх намагаються пояснювати перебудовою внутрішньої структури нейтронної зорі, наприклад зсувами кори (зоретрусами) або фазовими переходами ядерної речовини.
У 1991-1994 роках поблизу пульсарів PSR B1257+12 у Діві і PSR B1620-26 у Скорпіоні відкрито 4 планети за доплерівським зсувом радіовипромінювання.
Особливий інтерес становлять спостереження пульсарів, що входять до складу подвійних систем. Перший подвійний радіопульсар відкрито 1972 року Халсом і Тейлором.
 У 2004 відкрито систему з 2 нейтронних зір, причому з обох спостерігається пульсуюче радіовипромінювання. Спостереження таких систем дозволяють виявити втрати енергії за рахунок випромінювання гравітаційних хвиль, які передбачаються загальною теорією відносності.
1967 відкрито перший рентгенівський пульсар — Кентавр Х-3. Більшість відомих рентгенівських пульсарів (близько 40) входять до складу тісних подвійних систем і мають акреційні диски. Відомі також одиночні рентгенівські пульсари — магнетари. Вони мають магнітне поле в 1000 разів більше, ніж у звичайних нейтронних зір і проявляються у вигляді аномальних рентгенівських пульсарів і джерел повторювальних гамма-спалахів.

            Магнітосфера пульсара

 Магнітосфера пульсара складається з електронно-позитронної плазми, яка рухається в магнітному полі нейтронної зорі. Зовнішня межа магнітосфери — світловий циліндр, на якому лінійна швидкість обертального руху плазми досягає швидкості світла. Магнітосфера пульсара має порядок розміру Землі — десятки тисяч кілометрів. Потужне магнітне поле нейтронної зорі індукує поблизу її поверхні електричне поле. Найбільше електричне й магнітне поле досягається в полярній шапці поблизу магнітної осі. Розмір полярної шапки приблизно 1 км. Електронно-позитронні пари народжуються з вакууму під дією електричного поля в приповерхневому шарі висотою близко 100 метрів. Заряджені частинки рухаються вздовж магнітних силових ліній. Деякі магнітні силові лінії обриваються на світловому циліндрі. Тому заряди, які по них рухалися, стікають по поверхні циліндра і далі по останній замкненій силовій лінії (сепаратрисі) на поверхню нейтронної зорі. Під час руху поверхнею заряди викликають пондеромоторну силу, яка сповільнює обертання зорі. Таким чином енергія на утворення і випромінення магнітосфери отримується з кінетичної енергії обертання. Плазма вморожена в магнітне поле, електрони під час руху вздовж силових ліній зазнають прискорення й випромінюють. Поблизу поверхні нейтронної зорі енергія квантів випромінювання сягає 1012 еВ, а на світловому циліндрі вона спадає до радіодіапазону. Так утворюється випромінювання пульсара.

     Пульсарні відскакування

Пульсарне відскакування (англ. pulsar kick) — спостережуваний феномен, суть якого полягає в тому, що нейтронні зорі — залишки наднових — рухаються з надмірно великими швидкостями щодо навколишніх зір.? За оцінками просторового розподілу багато радіопульсарів мають швидкості близько 30-40 км/с. Також відомо немало пульсарів зі швидкостями 200-500 км/с, а у деяких випадках оцінки швидкостей сягають 2000 км/с. Наприклад, зоря B1508+55 має швидкість 1100 км/с та траєкторію, спрямовану назовні Галактики. Дуже переконливий зразок пульсарного відскакування можна спостерігати в туманності Гітара, де ударна хвиля, генерована пульсаром, рухається відносно туманності — залишку наднової — зі швидкістю 800 км/с.
Існує дві основних гіпотези виникнення таких великих швидкостей. Згідно з однією з них вони з'являються внаслідок розпаду подвійних систем (ефект Блаау). Якщо вибух у подвійній системі відбувається миттєво, швидкість, яку набувають зорі, що розлітаються, повністю визначається їх початковими та остаточними масами, періодами обертання та ексцентриситетом. Припустимо, маємо систему, що складається з гелієвої зорі масою 10 M та нейтронної зорі масою 1 Mʘ. Під час колапсу гелієва зоря скине 90% своєї маси, і система розлетиться. При цьому швидкості компонентів можуть бути близькими до початкових (але не перевищуватимуть їх). Максимальна швидкість нейтронної зорі в такій системі сягає 500 км/с, при цьому швидкість гелієвої зорі буде близько 50 км/с. Механізм Блаау разом із сучасним сценарієм еволюції подвійних систем може пояснити швидкості до 700 км/с. Один з головних наслідків цієї теорії — нейтронна зоря, яка швидко рухається, має бути старою. Якщо досліджуваний радіопульсар має теплове рентгенівське випромінювання, що пов'язане з охолодженням пульсара і свідчить про його молодість, механізм Блаау для цієї зорі можна відкинути.
За гіпотезою Шкловського пульсарні відскакування виникають внаслідок асиметрії у вибуху наднової. Якщо припустити, що під час колапсу частина енергії виділяється анізотропно, то із закону збереження імпульсу можна вирахувати, що швидкості можуть сягати 3000 км/с. Існують різноманітні гіпотези щодо причин такої асиметрії. Чугай (1984) помітив, що в потужному магнітному полі нейтронної зорі, що формується, має проявлятися ефект несиметричного випромінювання нейтрино. Детальні розрахунки показують, що навіть у надпотужних магнітних полях за рахунок цього ефекту неможливо досягнути швидкостей понад 100 км/с. Однак в останні роки інтенсивно розвиваються моделі несиметричного випромінювання нейтрино. В моделі Кусенко пульсарне відскакування обумовлене випромінюванням стерильного нейтрино, що є одним із кандидатів у темну матерію.
Другий можливий механізм, запропонований Липуновим (1983) — припливне викривлення зорі, що колапсує. Але цей ефект може бути суттєвим лише в маломасивних подвійних системах з білими карликами. За оцінками такий механізм може давати швидкості до кількох тисяч кілометрів на секунду. Також як можливий механізм розглядається несиметричній підпал речовини білого карлика внаслідок викривлення його форми.